Path of a Neutron
from Birth to Absorption

A Afast neutron is born Fission

from fission ~a7

The neutron moves
through the moderator
and loses energy in
- ‘each collision with a
moderator atom

B The neutron reaches
thermal energy

The neutron diffuses C The Neutron causes
through the moderator fission
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Fissicn Process

\Neutron Unstable nucleus

© Neutrons




Fission Chain Reaction
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Log Mean Energy Decrement

Logarithmic mean energy decrement

£ = LnE, - LnE

Ln (E, | E)

‘= -LnE! EY)

Value of £ is given by

£ =

2
. (A-1) Ln (A-1)
2A (A+1)

Approximate value of £ are given by

: _ 2

A+2/3

E is Greek letter Xi

" OHa.
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Slowing Down Powers and
Moderating Ratios

§ Es(cm_1)(a) g z"a-

ESzalza

He(b) 0.425 2x108%  9x10% 2 very small

? large
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Definitions

Logarithmic mean energy decrement &

N ‘t‘; = Ln _E.....'..

=
N =  Number of Collisions
E; = Initial energy (2 MeV)
E; - Final Energy (0.025 eV)

Macroscopic scattering cross-section X

Zg = Nog
N =  Nuclei per unit volume
(o) =  Microscopic cross-section

Slowing down power

Moderating ratio

OH 4.
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Bundles Arranged in Single Line
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Fission Characteristics

1000 -
100 -
| b
10 -
| 1
1 meV 1eV Energy 1 keV 1 MeV
\—
~ A ~ J —~ )
1N Resonance Smooth
region region region

Interactions of importance

o, = Scattering

o, = Radiative capture { 5 - Absorption
oy = Fission a

Capture/fission ratio: a = GY/ o

Probability of fission: p = G¢/ O,

|..| .



Neutron Multiplication Factor

Neutron multiplication factor

k.. = epnf (4 Factor)
k = epnfArA; (6 Factor)
€ = Fast fission factor
p = Resonance escape probability
N = 'Reﬁproduction factor
— v EfFUELZtFUEL
14 = Neutrons per fission
f = Thermal utilization factor
_ 3, FUEL / 5 REACTOR
Ag = Fast neutron non-leakage probability
A, = Slow neutron non-leakage probability

For reactor of finite size

k - kooAfA't

K, = k value for infinitely large reactor




Volume: —765— D2
Surface: D2

Surface/ volume ratio: D2 / —76—':- D2

= 6/D

i
P N

if- D Ratio = 6
ifD = 2 Ratio = 3
fD = 3 Ratio = 2
ifD = 4 Ratio = 1.5
fD = 5 Rato = 1.2
fD = 6 Ratio = 1
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Surface-Volume Ratio

Cube of side D volume 100
Surface = 602

Volume = D3

D3 = 100 .. D = 464
S = 6(464)?2 = 129

S:V Ratio = 129/100 = 1.28

Cylinder of length D, diameter D, volume 100

Surface = 2% D? + aD(D) =
= Ep?p = Epd

Volume 4 n

p® = 100({—) . D = 5083

s = -%—n(S.OS)Z = 119

S:V Ratio = 119/100 = 1.19
Sphere of diameter D, volume 100

Surface = nD?

Volume = %03

3 _ 6 . —

D° = 100(—>) .. D = 576

S = n(576) = 104

S:V Ratio = 104/100 = 1.04

3 n2
—D
2

" OH 5.




Variation of the
o Therinal Neutron Flux along the Axis of
a Cylindrical Reactor
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~Variation of Thermal Neutron Flux in Axial |
3 and Radial Directions
in a Cylindrical Reactor
r
Iy
,
Axial Radial
2




I':\

Depression of the Thermal Neutron Flux in the
Interior of Fuel Bundle

Relative
Radial 13
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Comparison of Neutron Leakage for
Bare and Reflected Cores

Reactor
Core

Reactor
Core

(a) (b)
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Asymmetry Produced by
Uni-Directional Refuelling

¢ With Uni-Directional -
Refuelling

d With
Bi-Directional
Refuelling
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Effect of Bi-Directional Refuelling in
Flattening Axial Flux Shape

Theoretical flux
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Flux Flattening Produced

by Adjuster Rods
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Quter zone
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Flux Distribution in Reflected Reactor

Thermal neutron flux
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Flux Flattening
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Neutron Flux in Core
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Flux Variation in Fuel
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Flux Flattening in CANDU Reactors

Bi-directional . Differential ¢aV9
Reflector fuelling Adjusters burnup

axial & radial X 42%




