

Log Mean Energy Decrement

Logarithmic mean energy decrement

٢

$$\xi = \frac{\overline{Ln E_o} - \overline{Ln E}}{\overline{Ln (E_o | E)}}$$
$$= -\overline{Ln (E | E_o)}$$

Value of ξ is given by $\xi = 1 + \frac{(A-1)^2}{2A} \ln \frac{(A-1)}{(A+1)}$

Approximate value of ξ are given by

$$\xi = \frac{2}{A+2/3}$$

 ξ is Greek letter Xi

Definitions

Logarithmic mean energy decrement ξ

Macroscopic scattering cross-section Σ_s

$\Sigma_{\mathbf{s}}$	=	Νσ _s
Ν	=	Nuclei per unit volume
σ	=	Microscopic cross-section

Slowing down power

ੇ

$$= \xi \Sigma_s$$

Moderating ratio

$$= \frac{\xi \Sigma_{\rm s}}{\Sigma_{\rm a}}$$

OH 4.(

Fig. :

Neutron Multiplication Factor

Neutron multiplication factor

)

9

k _∞	=	εpηf	(4 Factor)
k	=	$\epsilon p \eta f \Lambda_f \Lambda_t$	(6 Factor)
3	=	Fast fission fac	ctor
р	=	Resonance es	cape probability
η	Ξ	Reproduction	factor
	=	$v \Sigma_f^{FUEL} \Sigma_t^{FUEL}$	L
V	=	Neutrons per f	ission
f .	=	Thermal utiliza	ation factor
	=	$\Sigma_{a}^{FUEL} / \Sigma_{a}^{RE}$	ACTOR
Λ_{f}	Ξ	Fast neutron r	non-leakage probability
Λ_t	=	Slow neutron	non-leakage probability

For reactor of finite size

k	=	$\mathbf{k}_{\infty} \Lambda_f \Lambda_t$
k_	=	k value for infinitely large reactor

Surface-Volume Ratio

Cube of side D volume 100

Ð

(گ

<u>____</u>

Surface = $6D^2$ Volume = D^3 D^3 = 100 \therefore D = 4.64 S = $6(4.64)^2$ = 129 S:V Ratio = 129/100 = 1.29

Cylinder of length D, diameter D, volume 100

Surface = $2\frac{\pi}{4}D^2 + \pi D(D) = \frac{3}{2}D^2$
Volume = $\frac{\pi}{4} D^2 D = \frac{\pi}{4} D^3$
$D^3 = 100(\frac{\pi}{4})$: $D = 5.03$
$S = \frac{3}{2} \pi (5.03)^2 = 119$
S:V Ratio = 119/100 = 1.19

Sphere of diameter D, volume 100

Surface =
$$\pi D^2$$

Volume = $\frac{\pi}{6} D^3$
 $D^3 = 100(\frac{6}{\pi})$ \therefore D = 5.76
S = $\pi (5.76)^2 = 104$
S:V Ratio = 104/100 = 1.04

Fig. 6

..

Steelard in and

Fig

			-	 	
		÷.,			
	- 528				

Flux Flattening in CANDU Reactors					
	Reflector	Bi-directional fuelling	Adjusters	Differential burnup	φ _{avg} φ _{max}
NPD	axial & radial	x			42%
Douglas Point	radial	X		x	50%
Pickering - A	radial	X	×		57%
Pickering - B	radial .	an an an an Anna an An	x	121 - 121 - Tr	~60%
Bruce - A	radial	x		x	~59%
Brucer- B	radial	and a second with the second	X		~60%
Darlington	radial	x	x	x	~60%
Roint Lepreau	radial	X	x	X	~60%

<u>'''''</u> ''

.